

 Navigation

 	
 index

 	cardano-docs latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/cardano-docs/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/cardano-docs/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	cardano-docs latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 for-contributors/building-from-source.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

Building Cardano SL and Daedalus from Source

Cardano SL consists of a collection of binaries that constitutes
backend, a PureScript API for the Electron-based wallet and the
Electron-based wallet called “Daedalus”. You can read more about design
and architecture of Cardano SL in the Implementation
Guide.

Cardano SL and Daedalus Bridge

Source code for both Cardano SL and Daedalus Bridge can be obtained
(here)[https://github.com/input-output-hk/pos-haskell-prototype]

We strongly suggest using Nix package
manager [https://nixos.org/nix/download.html] to get the right
dependencies for building Cardano SL. It will fetch the correct
openssl version, but won’t override the system-installed version. Same
goes for dependencies such as rocksdb, with which many developers
report having problems. The rest of documentation assumes that the reader
has Nix package manager installed on their machine.

To build the project, first clone the source base and navigate to the root
directory of it:

git clone https://github.com/input-output-hk/pos-haskell-prototype.git
cd pos-haskell-prototype

Then enter nix-shell and, if it’s the first project in Haskell
language on the machine, run stack setup.

Tue Jan 10 sweater@chill ~/github/pos-haskell-prototype (master)
λ nix-shell
[nix-shell:~/github/pos-haskell-prototype]$ stack setup
* snip *

After the relevant Haskell compiler version is obtained, let’s enable
Nix for all stack builds. To do so, make sure that
~/.stack/config.yaml has the following option:

nix:
 enable: true

Now in order to build Cardano SL with wallet capabilities, run the
following command:

[nix-shell:~/github/pos-haskell-prototype]
$ stack build --flag cardano-sl:with-wallet --flag cardano-sl:with-web

Here is the asciinema
cast [http://asciinema.org/a/47vbdch8srbhf3j5kta7j9bov] of the project building.

It is suggested having at least 8GB of RAM and some swap space for the build
process. As the project is fairly large and GHC parallelizes builds very
effectively, memory and CPU consumption during the build process is
demanding.

After the project is built, the built binaries can be launched
using the stack exec command. Let’s discuss important binaries briefly
before proceeding to next steps.

cardano-node

Binary cardano-node is the most important binary of the system. It
launches nodes. In order to attach to a network, Hardened Kadmelia DHT
peer information has to be supplied. Peer discovery will follow if
initial DHT peer is available. The syntax for communicating initial
DHT peer is the following: --peer HOST:PORT/HOST_ID, for example
discover.memorici.de:21989/MHdtsP-oPf7UWly7QuXnLK5RDB8=.

Before providing an example of running the node, the trickiest command
line arguments are noted.

When a testnet is bootstrapped, stake is distributed across several
addresses in the genesis block. The distributions that are supported
are flat distribution and Bitcoin distribution. Spending and VSS keys
are generated for genesis block. If a node has access to a genesis key
mapping, the index of the secret key in this mapping can be provided
using --vss-genesis N and --spending-genesis N, where N is index
in this mapping.

Example of a local invoaction connecting to HostID
MHdtsP-oPf7UWly007QuXnLK5RD=:

stack exec -- cardano-node \
 --port 3002 \
 --db-path run/node-db2 \
 --vss-genesis 2 --spending-genesis 2 \
 --peer 127.0.0.1:3000/MHdtsP-oPf7UWly007QuXnLK5RD= \
 --json-log=logs/2017-01-10_035413/node2.json \
 --logs-prefix logs/2017-01-10_035413 \
 --log-config logs/2017-01-10_035413/conf/node2.log.yaml \
 --flat-distr "(3, 100000)"

cardano-smart-generator

A tool which tests if transactions are accordingly sent by a node in
a network; a stress-test can be invocated by cardano-smart-generator.
This tool is designed to provide reasonable and reliable measurements of
transactions per second (or TPS).

It works in few rounds, each split in few phases.

At start, the initial transaction is submited. This transaction uses unspent
output from the genesis address, index of which is supplied as --index
argument and creates (k + P) * slotDuration * maxTPS outputs, which
would be used for further transactions. k (block depth to treat
transaction as stable) and P (approximate amount of slots needed for a
transaction to be successfully published in a block) are parameters
here. During our benchmarks we were using k=6 and P=2 with hundred
nodes.

Each round of cardano-smart-generator tests that the system is capable of
handling a concrete TPS value. It goes from value provided by --tps
CLI argument and adjusts it every step by --tps-step value. Both can
be fractional (double precision floats). The process will continue for
at most --round-number (N) rounds.

This way, maxTps = initTps + tpsStep * N.

All further transactions are (in, 1, A), where

		A is the owner of in;

		1 is the amount of coins transferred;

		in is the output of previous transaction;

Each subsequent transaction is being sent only if the parent is included
into block of depth k (i.e stable). This way there’s no possibility
of producing more transactions than a node can include into blocks.

Each round is split to (R + 2) phases. On each phase transactions are
sent with current TPS rate. On the first phase no measurements are taken.gq
On the last phase no new transactions get emmitted, only confirmations
for sent ones being collected.

Each phase takes (k + P) * slotDuration seconds, where P is
approximate amount of slots needed for a successful transaction to be
published in block.

Transactions are sent in a few threads. Each thread uses its own
transaction pool derived from its own index in genesis block.

Here is an example of invocation of cardano-smart-generator sending
transactions from node number zero:

stack exec -- cardano-smart-generator \
 --json-log=txgen.json \
 --index 0 \
 --round-period-rate 60 \
 --round-number 10 \
 --tps 50 \
 --propagate-threshold 4 \
 --tps-sleep 20 \
 --init-money 100000 \
 --peer 127.0.0.1:3000/MHdtsP-oPf7UWly007QuXnLK5RD=

The purpose of the most important binaries and basic
operations with said binaries is clarified, let’s proceed with building
the wallet. On the Haskell side of things, just two matters have to be
addressed —

		Generate types for daedalus-bridge

		Build Daedalus Bridge

Generating Types for Daedalus Bridge

To generate types, run

stack exec -- cardano-wallet-hs2purs

A warning message will be printed that is safe to ignore. Once the types
are generated, proceed to the next step.

Building Daedalus Bridge

To build Daedalus Bridge, some JavaScript heavy-lifting must be done.
Currently Nix expressions don’t install Node.js and NPM, so
those have to be installed manually. To do that, consult the repositories
of the package manager of according OS or download binaries from the
net [https://nodejs.org/en/download/] you also will need the following
npm packages: bower, pulp, purescript. Those can be installed with

npm install -g bower pulp purescript

To build Daedalus Bridge with npm installed, run the following commands:

cd daedalus
npm install

Running npm install will register daedalus-bridge in local npm
package repository. This way, at any time, daedalus-bridge
dependency can be satisfied in any project that depends on it by
manually running npm link daedalus-bridge.

Building Daedalus

If the instructions of building Cardano SL and the Bridge have been followed,
building Daedalus wallet is as simple as cloning Daedalus’ repository:

git clone https://github.com/input-output-hk/daedalus.git
cd daedalus

Then execute the following command:

npm install

Now to run the wallet connected to the Cardano SL in dev-mode, call

npm run dev

 © Copyright 2016.
 Created using Sphinx 1.3.5.

for-contributors/implementation.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

Implementation

This section should serve as a starting point for developers who wish to
contribute to the original client, as well as those who wish to undertake making
their own client for Cardano SL. Nonetheless, this section covers the
original client to great extent, assuming that it’s an initial
reference client for some time.

High-level overview

A Cardano SL node is a blockchain node. When ran, it finds other
nodes (via DHT [http://ast-deim.urv.cat/cpairot/dhts.html]) and then starts
performing blockchain-related procedures.

Time in Cardano SL is divided into epochs. Every epoch is divided
into slots. Epochs and slots are numbered. Therefore, slot (3,5)
is read as “fifth slot of the third epoch” (0th slot and 0th epoch are also possible).

The values for Cardano SL are:

		Slot duration: 15 seconds

		Security parameter k: 2

Please refer to the last section of this article to see all the
consants and their values.

In other words, a slot lasts 15 seconds, and an epoch has 6×k=12 slots
in it, thus it lasts 3 minutes.

On each slot, one, and only one, of the nodes generates a block to be added
to the blockchain. During the epoch, nodes send each other MPC
messages to come to the consensus as to who would be allowed to generate blocks
in the next epoch. These messages (along with transactions) are included
into blocks.

The more currency (or “stake”) an address holds, the more likely it to
be chosen to generate a block. Please refer to the pertinent
section for more details.

In short: Send messages, receive messages/transactions/etc, form a
block (if you’re the selected stakeholder), repeat.

Business logic

Listeners

Listeners handle incoming messages and respond to them. Various
supplemental listeners will not be covered, instead focusing on the main ones:

		Block listeners:
		handleBlock: Handles an incoming block. Takes transactions from it,
sends the block header to other nodes, etc.

		handleBlockHeader: Handles an incoming block header. Decides whether the block is needed or not; if it is then request the block.

		handleBlockRequest: Handles an incoming block request. If block is in possession, sends it to the other node.

		Transaction listeners:
		handleTx: Processes a single transaction.

		handleTxs: Processes multiple transactions and relays the ones that have
validated successfully to other nodes.

		SSC Listeners:
		handleSsc: Handles consensus-related messages and responds to them.

Workers

A Worker is an action repeating with some interval. The workers of importance are:

		onNewSlotWorker: Runs at the beginning of each slot. Does some cleanup,
etc, and then it runs sscOnNewSlot and blkOnNewSlot. This
worker also creates a genesis block if it’s the beginning of
the epoch. There are two kinds of blocks – “genesis blocks” and
“main blocks”. Main blocks are stored in the blockchain, genesis blocks are
generated by each node internally between epochs. Gnesis blocks aren’t
announced to other nodes. For convenience, however, a node may request
a genesis block from someone else if this node was offline for some time
and needs to catch up with the blockchain.
		blkOnNewSlot: Creates a new block (when it’s the node’s turn to create
a new block) and announces it to other nodes.

		sscOnNewSlot: Sends a message to other nodes. The actual consensus
algorithm and the nature of sent messages will be discussed later.

		blocksTransmitter: Runs two times per slot. Announces the header of the
latest block.

		txsTransmitter: Runs once per slot. Announces the local set of transactions.

		sscTransmitter: Retransmits SSC messages. To find out how often
this worker runs, see mpcRelayInterval constant in the original client.

Proof of Stake

At the heart or Cardano SL sits the Oruboros Proof of Stake protocol, as
described in the whitepaper [https://eprint.iacr.org/2016/889] of the same
name.

Static state

Pending

Dynamic state

Pending

Follow the Satoshi

Pending

Obtaining the same seed

Pending

Blocks

MainBlockchain

Pending

GenesisBlockchain

Pending

Forks

Generally, one chain (the main chain) is maintained by a node, but eventually
alternative chains may arise. Recall that only blocks k and more slots deep
are considered stable. This way if a block which is neither a
part nor a continuation of our blockchain is received, we first check if its complexity
is bigger than ours (the complexity is the length of the chain), we start
subsequently request previous blocks from the node that provided alternative chain
header. If we come deeper than k slots ago, the alternative chain gets
rejected. Otherwise, once we get to the block existing in our chain, the
alternative chain is getting added to storage. From the standpoint of
state, we store and “maintain” all the alternative chains that are viable.
If it appears that an alternative chain is longer than the main chain, they
are swapped, making the alternative chain the new main chain.

Supplemental parts

SSC

SSC stands for Shared Seed Calculation.

Pending: what to talk about here that is general enough for the original
client and for alternative clients?

Crypto

Pending: what to talk about here that is general enough for the original
client and for alternative clients?

Storage

Pending: what to talk about here that is general enough for the original
client and for alternative clients? Storage is RocksDB for original client,
but alternative clients may want to implement with different engine. Do we
want to simply mention RocksDB and leave it as a recommendation, or expand
further?

Slotting

The consensus scheme used relies on correct slotting. More specifically, it
relies on the assumption that nodes in the system have access to the current
time (small deviations are acceptable), which is then used to figure
out when any particular slot begins and ends, and do particular
actions in that slot.

System start time is a timestamp of the (0,0) slot (i.e. the 0th slot of
the 0th epoch).

Pending: Is the timelord-timeslave scheme still relevant?

P2P Network

Peer discovery

For peer discovery Kademlia DHT is used. It’s a general solution for distributed
hash tables, based on whitepaper by Petar Maymounkov and David Mazières,
2002. [https://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf]

However, it’s not used as a table, only its peer discovery mechanism.

In short, each node in the Kademlia network is provided a 160-bit id which is
randomly generated. Distance between nodes is defined by XOR metric. Network
is organized in such way that node knows no more than K (K=7 in the
original client implementation) nodes for each relative distance
range: 2^i < d <= 2^(i+1).

Messaging

Kademlia already provides the notion of nodes that are known. Which
can be simply called neighbors. To send message to all nodes in
network, you can send it to neighbors, they resend it to their
neighbors, and so on. But sometimes we may need to not propagate
messages across all network, but instead send it to neighbors
only. Hence we have three types of sending:

		Send to node

		Send to neighbors

		Send to network

Message types

To handle this three kind of message headers are used, there’s two message types:

		Simple: Pending: Describes how a Simple message is implemented

		Broadcast: Pending: Describes how a Broadcast message is implemented

Broadcast messages are getting resent to neighbors right after retrieval (before
handling). Also, they are being checked against LRU cache and messages
that are already received once get ignored.

Constants

The following list of constants are used in the original client. Their values
have been discussed with the original authors of of the protocol as well as
independent security auditors, so their reuse is strongly suggested for
alternative clients.

Constant name	Value	Description
——————————-	—————	——————————
Protocol constants		
k	2	Security parameter
slotDurationSec	10	Duration of slots in seconds
networkDiameter	3	Pending
neighboursSendThreshold	4	Pending
genesisN	20	Pending
maxLocalTxs	10000	Pending
defaultPeers	[]	Pending
sysTimeBroadcastSlots	6	Pending
mpcSendInterval	12	Must be less than k * slotDuration - networkDiameter
mdNoBlocksSlotThreshold	10	Pending
mdNoCommitmentsEpochThreshold	3	Pending
vssMaxTTL	100	In Epochs
protocolMagic	0	Pending
enchancedMessageBroadcast	2	Pending
delegationThreshold	0.001	1% of the stake
Update system constants		
updateServers	[]	List of IPs
maxBlockProxySKs	10000	Pending
updateProposalThreshold	0.1	10% of the total stake
updateVoteThreshold	0.001	0.1% of the total stake
updateImplicitApproval	40000	In Slots

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/plus.png

getting-started/ui.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

Navigating in Daedalus User Interface

Daedalus, the wallet of Cardano SL offers a multitude of functions, that
are easy and intuitive to use. Menu animations flow well and have a
zero-distraction mode. UI is minimalistic, color scheme is neutral. The
structure is concise and easy to follow. We’ve built Daedalus for your
convenience, prioritizing user experience and intuitive design. Current
feature set is minimalistic, most importantly it consists of options to

		Check your balance

		Make transactions

		Create custom “wallets” tailored for your needs

		Set up identity

Many more features are coming soon, so stay tuned for the update
changelogs and changes to this documentation!

Layout

The general layout of the UI gives room to split into left, middle and
right section, excluding the header, footer and margins used for
composition. When referred to in the document, the left side refers to
the menu, middle refers to main contents of page in question, right
holds information and extra options.

Wallet

Denoted with an icon that represents a physical wallet. Highlighted
upon hovering. Each sub-menu contains information about Ada balance
corresponding to each wallet; an option to send and receive money
(highlighted upon hovering). Each wallet shows chronologically ordered
transaction history.

Send Money

To send money you should click on “Send Money” button and fill in dialog
consisting of the following inputs:

		Receiver (Ada address)

		Amount (In Ada tokens)

		Description (Optional)

		Send button

Receive Money

If you want to receive money from someone and want to tell them your
address, click “Receive Money” button. In the midsection your address
will be displayed, as well as its QR encoding.

We’re working on generating requests for specific amounts of Ada.
Below will be a field to do so (inactive at the moment).

Upon clicking either sending or receiving, the menu will stay the same,
showing wallet balance.

When you click on the hamburger button, a sub-menu is expanded, listing
your wallets and providing you with an option to add a new wallet.

Settings

Denoted with a double toggle icon on the far left side of the page.
Upon clicking, a profile editing page with following fields
opens:

		Name

		E-mail

		Profile picture upload

		Phone number

		Password

		Language

You can upload a profile picture by
dragging and dropping a file or clicking to upload.

Password field shows when the password was last updated.

On the right side more groups of settings can be seen (aside from the
Profile that was already discussed previously):

		Security

		Identity and Verification

		Display

		Privacy

		Terms of Use

Staking

Staking information, delegation and Instant Buy options are something
we’re considering to add in the nearest future. For now, the process of
staking is carried out autmatically on background.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

getting-started/new-account.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-close.png

for-contributors/guide.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment.png

getting-started/first-transaction.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

Your First Transaction

What’s the point of a cryptocurrency if we can’t send a transaction with
it? In this section we will explore step by step how you can create a
wallet and transfer some Ada to yourself.

After you redeemed your Ada voucher, all your Ada is in a wallet called
“Redemption Wallet”. Let’s create a wallet called “Personal Wallet” and
transfer some Ada from “Redemption Wallet” to the “Personal Wallet”.

Create Personal Wallet

To create new wallet, follow this illustrated guide:

Pending

Now that the wallet is created, select it, go to Receive tab and follow
the instructions below to copy the address of this wallet.

Pending

Make a Transaction to Your Personal Wallet

Now that you have target address in the clipboard, follow the
instructions below to create a transaction sending some Ada from
”Redemption Wallet“ to the newly created “Personal Wallet”. Paste the
address of your wallet in the field marked with (!).

Pending

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/minus.png

getting-started/buying-ada.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

ada/monetary-policy.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

 © Copyright 2016.
 Created using Sphinx 1.3.5.

getting-started/using-vouchers.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/file.png

getting-started/participating.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

timeline/testnet.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

Testnet Era

In January 2017, a Cardano SL test network is launched the testnet is
required to get community acquainted with the cryptocurrency and to
polish the implementation, eliminating possible flaws or instabilities.

During testnet era, all the functionality, including reward mechainsm
will be activated and to get coin supply anyone will be able to redeem a
private key from Cardano SL Testnet Faucet.

On January 21st 2017, testnet will be reset and users will be asked to
download new, updated version of Cardano SL. This part of testnet era
can be thought of beta testing, resulting in the
release of Cardano SL in February.

We encourage everyone to download Cardano SL client for your platform,
get some coins from the faucet and invite other people to participate in
beta testing.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

getting_started.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

Where to start

Transactions

Addresses

Your first transaction

Simple transactions

Complex transactions

 © Copyright 2016.
 Created using Sphinx 1.3.5.

cardano/updating.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

 © Copyright 2016.
 Created using Sphinx 1.3.5.

timeline/bootstrap.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

Bootstrap Era

As Cardano SL goes live in February 2017, initial ninety days it will
operate in “bootstrap mode”. As people who purchased Ada redeem their
coins, stake will get automatically delegated to a pool of trusted nodes
that will maintain the network. During this time no block rewards will
be issued, we will maintain the network pro bono. This is required
because in order for protocol to function correctly, some of
stakeholders who jointly posses majority of stake have to be online,
which, realistically, won’t be the case during the first months of
network operation.

Bootstrap era will lead to the reward era when we
issue updates to the protocol and provide big stakeholders with
conveinent options to run their nodes in on personal servers in the
cloud.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

ada/what-is-ada.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

 © Copyright 2016.
 Created using Sphinx 1.3.5.

installation.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

Get Cardano SL

		Windows [https://github.com/input-output-hk/pos-haskell-prototype/tree/master/installers]

		macOS [https://github.com/input-output-hk/pos-haskell-prototype/tree/master/installers]

Linux installer is going to be released soon. For now, to get Cardano
SL on Linux, please refer to the Building From
Source section.

Running a Node

In January 2017 the network enters testnet era. A
test network is released and anyone interested in using Cardano SL can
claim Ada by requesting it from the Cardano SL Testnet Faucet.
During this period of time we aim to excessively test all the protocol
capabilities, eliminating possible implementation problems that can lead
to the network instability. Testnet will get reset once during this
time.

Some time later in 2017 the system will go live with initial ninety days
of bootstrapping era. As the network will enter rewarding
era. Then it will be advisable for stakeholders
with a considerable amount of stake to
participate in running the protocol by keeping the node online with port
8777 open. We plan to release a one-click solution for running a node
in the cloud, which will allow you to participate in running the
protocol with zero-maintenance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

cardano/proof-of-stake.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

Ouroboros Proof of Stake Algorithm

Ouroboros Proof of Stake Algorithm is the most important part of
protocol, the way that nodes reach consensus about the state of ledger.

Ouroboros is unique as it is the first blockchain protocol based on
proof of stake that is scientifically proved to be secure.

Why Proof of Stake?

The most important thing about picking proof of stake algorithm over
proof of work, which is adopted by Bitcoin is the energy consumption
considerations. Running Bitcoin protocol is very a tremendously
expensive endeavor. It is estimated, that 3.8 American Households can be
powered for a day by the energy spent to generate one Bitcoin
transaction. The energy requirements for running Bitcoin protocol only
grow as more and more Bitcoin miners sink money into mining and
difficulty of the problem that their computers (mining rigs) are
cracking increases. This is why researchers did their best to
investigate alternative ways to reach consensus such as using so-called
BFT (Byzantine Fault Tolerant) consensus algorithms and Proof of Stake
algorithms. First significant work on Proof of Stake was conducted by
the team of Nxt cryptocurrency, however their protocol had significant
flaws and no formal verification.

What is Proof of Stake?

In this section we explain what does “Proof” mean and what “Stake”
means, and then we put it together, explaining what “Proof of Stake”
means.

Proof

“Proof” part of Proof of Stake is about having evidence that blocks of
transactions are legitimate.

Stake

“Stake” means “the relative value held by addresses on the node”. When
we say “relative value”, what we mean is “take all the value held by
wallets on a particular node and divide it by the total value in the
system”.

Proof of Stake

Rather miners pouring money into mining rigs running the protocol, in
order to participate in running the protocol in Proof of Stake
environment, we say that “slot leaders” generate blocks for the
blockchain. Anyone can become a slot leader, if the coin selection
algorithm would select a coin they own. We say that this blockchain is
self-referential that means that maintaining the blockchain relies on
the network participants themselves and on the network state. Nothing
except for the network state and network participants being online
matters for the sake of Proof of Stake.

Follow the Satoshi

Let’s elaborate a little bit on how slot leader gets selected. The
smallest, atomic, piece of value is called a “coin”. In Bitcoin, atomic
piece is called “Satoshi”, honoring the creator of Bitcoin, Satoshi
Nakamoto. Fundamentally, we can say that the ledger produces
distribution of coins. Follow the Satoshi is an algorithm that
verifiably picks a coin, provided randomness. When your coin gets
selected, you become slot leader and can listen to transactions
announced by others, make a block of those transactions, sign it with
your secret key and publish it to the network. Of course, you don’t have
to do it manually, your node will take care of everything.

Multi Party Computation

The matter of fueling Follow the Satoshi with randomness is another
problem in itself. We’re using Multi Party Computation approach when
select nodes provide so called “commitments” and then those get
“revealed”, producing a random value generated independently by
participants of the network.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

cardano/rewards.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

Reward System

Slot leaders get rewards proportional to transactions they publish in
their blocks.

Pending

 © Copyright 2016.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

cardano/network.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

Joining the Network

Cardano SL being a decentralized system, we produced it as an open
network, meaning that anyone can join the network and start
participating in the protocol. To provide peer discovery we’re using
a hardened Kademlia DHT protocol. To join the network, node has to know
at least one node. We say that this node is the bootstrap node. Even
though the pool of bootstrap nodes is hardcoded, you can use any other
stable node for bootstrap.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

timeline/future.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

 © Copyright 2016.
 Created using Sphinx 1.3.5.

glossary.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

Glossary

Glossary of terms related to Cardano SL.

Core Concepts

Cryptocurrency

Computer system which uses cryptographic protocols to generate a ledger.

Cardano SL

Hybrid decentralized cryptocurrency.

Ledger

A collection of data that keeps track of value assigned to individuals.

Transaction

Data that represents the act of transferring value.

Decentralization

A notion of a computer system operating through interaction of independent
nodes. In case of maintaining a shared data collection such as ledger, a
consensus is required for consistency and thus reliability of data.

Consensus Algorithm

A way for a decentralized system to reach a consistent view on shared
collections of data. Cardano SL uses the Ouroboros Consensus
Algorithm, which is an algorithm based on
Proof of Stake.

Proof of Stake

To generate data in a decentralized environment, election of a temporary
authority is required. This temporary authority will tell which data should
be included into the shared collection. In case of cryptocurrencies, the data
included is transactions Proof of Stake approach is to say that the more value
someone has, the more inclined they are to maintain the ledger. Thus, the
probability of a user (Alice) having right to add a group of transactions
(called block) to the collection of data from which the ledger can be
derived (called blockchain) is determined by the percentage of the total
value (the money Alice has is called stake, and Alice herself is
called stakeholder) in the system she owns (see Follow the
Satoshi).

Node

A computer that runs a computer program that participates in a decentralized
protocol system.

Protocol Basics

Slot

A small period of time that is significantly larger than the expected
difference in clocks on different nodes.

Epoch

A bigger period of time for which we know in advance who will have the right
to generate a block in each slot.

Follow The Satoshi

A mechanism whereby stakeholders are selected at random to forge a new block
in the blockchain, with proportional chance to get elected depending on their
amount of stake in the protocol.

Leader Selection

A process of picking who will generate blocks in the next epoch. Leaders are
selected with probability proportional to their stake (see
Proof of Stake, Follow the Satoshi).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

cardano/transactions.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

Transactions in Cardano SL

You can think of transactions in Cardano SL as entities that consist of
list of inputs and a list of outputs. Outputs of a transaction can later
be used as inputs for another transaction.

Every node (except for SPV, or lightweight nodes) in the network
verifies transactions, so those nodes have to keep track of unspent
outputs, this is called “utxo”, or “Unspent Transaction Outputs”. By
tracking utxo, every node can validate that inputs in a published
transaction are indeed unspent outputs.

Transactions are signed with the issuer’s secret key. All of this,
including selection of unspent outputs to be used as inputs is done
automatically and you don’t have to worry about it when making a
transaction using Daedalus UI.

Proofs of Transaction Legitimacy

Each transaction in Cardano is accompanied by a proof (also called a
witness) that this transaction is legitimate. Those proofs are stored on
the blockchain and anybody can see, inspect and independently verify
them. However, not everybody needs to do that – for instance, if you are
an SPV node, you are trusting other nodes to do the verification, and
thus you would rather not have those proofs sent to you with every
transaction, as they are useless to you. Moreover, even if you are a
full node, you might want to delete old proofs after some time in order
to save space.

The technique of storing transactions separately from their proofs is
called “segregated witness” (you may have heard of it being recently
implemented in Bitcoin). Under this scheme, transactions and proofs are
stored in two separate places in a block, and can be processed
independently.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

timeline/reward.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

Reward Era

Ninety days after the release, the reward era will start. This is part
of Cardano SL lifetime during which the network will operate in a
completely decentralized, trustless mode. We expect staking pools to
emerge during this era, allowing stakeholders with little stake to get
rewards as stakeholders with large stake keep their nodes online to
maintain the protocol in a decentralized fashion.

The system will receive regular software updates moving forward and
massive amount of new features will be released later in
2017.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

cardano/plutus/examples.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

 Here we’ll take a look at some of the common examples of programs to give you a
better feel for how the Plutus language works. We’ll implement Peano numerals,
cons lists, and binary trees, together with some common functions relating them.

To start, let’s define Peano numerals:

data Nat = { Zero | Suc Nat }

The naturals support a variety of functions, of course, such as addition,
multiplication, factorial, and fibonacci, which are typical example programs.

add : Nat -> Nat -> Nat {
 add Zero n = n ;
 add (Suc m) n = Suc (add m n)
}

mul : Nat -> Nat -> Nat {
 mul Zero _ = Zero ;
 mul (Suc m) n = add (mul m n) n
}

fac : Nat -> Nat {
 fac Zero = Suc Zero ;
 fac (Suc n) = mul (Suc n) (fac n)
}

fib : Nat -> Nat {
 fib Zero = Suc Zero ;
 fib (Suc Zero) = Suc Zero ;
 fib (Suc (Suc n)) = add (fib n) (fib (Suc n))
}

Cons lists are also a familiar type:

data List a = { Nil | Cons a (List a) }

This demonstrates the use of parametric types, where he, List a has a type
parameter a for the type of elements. So, for example, List Nat is the type
of lists of Peano numerals.

Lists support a variety of functions, such as length, append, and map:

length : forall a. List a -> Nat {
 length Nil = Zero ;
 length (Cons _ xs) = Suc (length xs)
}

append : forall a. List a -> List a -> List a {
 append Nil ys = ys ;
 append (Cons x xs) ys = Cons x (append xs ys)
}

map : forall a b. (a -> b) -> List a -> List b {
 map _ Nil = Nil ;
 map f (Cons x xs) = Cons (f x) (map f xs)
}

Here we can see the use of polymorphism in Plutus. These functions work for any
list, regardless of the element type, so we can abstract over the element type
by using forall. So for instance, the type of length says that for any
choice of a, we have a function of type List a -> Nat.

It’s important to note that in Plutus, this polymorphism exists only for the
declaration of values. Any time you use a polymorphically-declared value, the
choice of the type variable must be fixed by the use site. You can’t treat these
declarations as giving polymorphic values in general, as in System-F. Rather,
a polymorphic type in a declaration is an abbreviation for an infinite family of
identical definitions that differ only in the choice of that type variable. For
example, we could define multiple length functions like so:

lengthNat : List Nat -> Nat {
 lengthNat Nil = Zero ;
 lengthNat (Cons _ xs) = Suc (lengthNat xs)
}

lengthBool : List Bool -> Nat {
 lengtBool Nil = Zero ;
 lengthBool (Cons _ xs) = Suc (lengthBool xs)
}

lengthListNat : List (List Nat) -> Nat {
 lengthListNat Nil = Zero ;
 lengthListNat (Cons _ xs) = Suc (lengthListNat xs)
}

And they’re all identical except the name and the choice for a. This is of
course redundant, so we can use the polymorphic declaration given above. But,
this declaration does not give us a value length with the type
forall a. List a -> Nat. Instead, it gives us that entire infinite family of
declarations, but with a convenient abbreviation syntax. This is why the use of
such polymorphic declarations requires the choice of the type variables to be
fixed at the use site.

Another common type is the type of binary trees with data in the branches:

data Tree a = { Leaf | Branch a (Tree a) (Tree a) }

Such trees support functions such as count, traversal, and reverse:

count : forall a. Tree a -> Nat {
 count Leaf = Zero ;
 count (Branch _ l r) = Suc (add (count l) (count r))
}

traversal : forall a. Tree a -> List a {
 traversal Leaf = Nil ;
 traversal (Branch x l r) = Cons x (append (traversal l) (traversal r))
}

reverse : forall a. Tree a -> Tree a {
 reverse Leaf = Leaf ;
 reverse (Branch x l r) = Branch x (reverse r) (reverse l)
}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

cardano/plutus/introduction.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

 Plutus is a strictly typed pure functional programming language used for
defining smart contracts in Cardano. The syntax is fairly Haskell-like, but
unlike Haskell, the language is eagerly evaluated.

Declaring Data Types

In Plutus, to define a data type, we give the name of the type, then any type
parameters, together with a list of constructor alternatives like in Haskell.
Each constructor alternative has the types of its arguments.

So, for instance, the type of Peano numerals would be defined as

data Nat = { Zero | Suc Nat }

whereas binary trees would be defined as

data Tree a = { Leaf | Branch (Tree a) a (Tree a) }

The type constructor Tree takes one parameter, a. It’s inhabited by values
constructed by two constructors, Leaf, which has no arguments, and Branch,
which has three arguments, a left subtree of type Tree a, a value of type
a, and a right subtree of type Tree a.

We can inspect data using the case construct, like so:

case t of {
 Leaf -> ... ;
 Branch l x r -> ...
}

Declaring Values

To declare a new value (whether it’s a function or not), we give its type, and
then specify its value. For instance, to define addition for natural numbers,
we can give a recursive definition using case:

add : Nat -> Nat -> Nat {
 add = \m n ->
 case m of {
 Zero -> n ;
 Suc m' -> Suc (add m' n)
 }
}

We can also use pattern matching equations like in Haskell, which makes the
definition of functions like this much more elegant:

add : Nat -> Nat -> Nat {
 add Zero n = n ;
 add (Suc m) n = Suc (add m n)
}

Smart Contract Computations

Plutus has one important type built into the language specific for smart
contract computations: the type constructor Comp, which takes one type
parameter. The simplest way to make values is with the two computation
constructors success, which takes a value M with type A (for any choice
of A) and produces a computation of type Comp A that represents a
successful smart contract computation that returns M. You can also build a
value of type Comp A with just failure, which represents a failed
computation.

It’s also possible to chain together smart contract computations using do
notation. Given a term M of the type Comp A, and a term N of type
Comp B with a free variable x of type A, we can form do { x <- M ; N }
which runs the computation M, binds its returned value to x, then runs the
computation N. If the term M computes to failure, then the failure is
propagated by the do construct and the whole thing computes to failure.

This is most useful for building validator scripts for smart contracts. The
standard way this is done is by asking for a redeemer program of type Comp A
and a validator program of type A -> Comp B, which are then composed to form
do { x <- redeemer ; validator x }. The redeemer program is run, returning
whatever data validator needs, and then that data is given to redeemer,
which is run.

More Detailed Overview

The other files in this directory provide a more detailed overview of the
grammar, types, and programs of Plutus, including the built in types and
functionality, and should be read before diving into writing programs. There’s
also a demo file, showing the implementation of a number of common functions,
to give a good sense of the use of the language.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

cardano/addresses.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

Addresses in Cardano SL

To send and receive value, Addresses are used in virtually any cryptocurrency.

How Does an Address Look Like?

In Cardano, we adopt Bitcoin way of encoding the address. It’s called
“Base 58” because it uses 58-symbol alphabet to encode data. Here is the
alphabet we are using
123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz. Notably,
it avoids both non-alphanumeric characters and letters which might look
ambiguous when printed. It is therefore designed for human users who
manually enter the data, copying from some visual source, but also
allows easy copy and paste because a double-click will usually select
the whole string. We also adopt a way to make sure that an address is
entered correctly by appending a 32-bit Cyclic Redundancy Code checksum
(CRC32) to the end of the part of the address which encodes public key
or script hash. This way, full address is generated by the following
rule, where <> is a concatenation operator:
toBase58(addr<>crc32(addr)).

An example of a valid address is

1EWYSJnvgnSUmp8Gi4mADvU2zkJgVAA7McgFRXiqwDBs8

Public Key Addresses

As we have discussed in the Introduction, the
wallets you see in the user interface are a convenient representation of
the fact that you own a secret key to spend money in this particular
wallet. But how such spending is verified by the network and how can you
receive money from others? The answer is that along with the secret key
which is used to control the value in your wallets, a public key is
generated and encoded in Base58. This public component can be known by
anybody, hence the name. Public key mostly serves two purposes:

		When you create a transaction, anyone with the corresponding public
key can verify that you indeed control secret key.

		When someone wants to send you the money, they use your public key
encoded in Base58 as the address.

Public key is also used to verify some protocol messages that have to be
signed with the secret key.

As we have discussed before, address is exactly the public hash key plus
CRC32, encoded in Base58.

Pay to Script Hash

Interestingly, Cardano SL also supports Pay to Script Hash transactions,
more often referred to as P2SH transactions, or just “P2SH”. The idea of
P2SH is to provide a lot of flexibility to formulating complex rules for
spending money. Instead of sending a transaction to a public key
address, we create a validator script into which redemption script can
be plugged in. To redeem funds, we evaluate validator script with
redemption script as an argument. If validator script evaluates to
success, money is gettning sent as specified by the redeemer.
Otherwise, nothing happens.

To quote Bitcoin Wiki,

Using P2SH, you can send bitcoins to an address that is secured in
various unusual ways without knowing anything about the details of how
the security is set up. The recipient might need the signatures of
several people to spend these bitcoins, or a password might be
required, or the requirements could be completely unique.

Advanced Topics

Hashing

For a number of reasons, it is useful to have fixed-length
representation of arbitrary data, for example, when we’re working with
P2SH, we want validator scripts of arbitrary length to be hashed in a
P2SH address of the same length that is easy to type in and operate
with. Also, in order to have an authenticated data structure capturing
information stored on the blockchain, we have to have the same kind of
primitive. The requirements on such a function are manyfold:

		On the same input data it always returns the same output string

		It is computationally simple to calculate output for a given input

		It is computationally complex to reverse the process

		A small change in input produces big change in output

		It is computationally complex to find two pieces of input data that
produce the same output

The way we transform arbitrary input into output, complying with (1-5)
is called “a cryptographic hash function”.

We are currently using two hash functions: SHA3 with 256 digest and
BLAKE2S with 224 bit digest.

For example, for addresses, we wrap SHA3 digest into BLAKE2s, as shown
in the code snippet below.

type AddressHash = AbstractHash Blake2s_224

addressHash :: Bi a => a -> AddressHash b
adressHash = AbstractHash . secondHash . firstHash
 where
 firstHash :: Bi a => a -> Digest SHA3_256
 firstHash = hashlazy . Bi.encode
 secondHash :: Digest SHA3_256 -> Digest Blake2s_224
 secondHash = CryptoHash.hash

 © Copyright 2016.
 Created using Sphinx 1.3.5.

cardano/plutus/types.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

 This document contains a reference for the types of the Plutus language. It uses
some informal type theory, which hopefully is understandable to everyone reading
this document.

Plutus comes with a handful of built in types (ints, floats, bytestrings),
and a single built in type operator (functions). Other types are defined by the
authors of programs. We’ll discuss each of these in turn.

Ints, Floats, and Byte Strings

Int, Float, and ByteString are primitive types, with constructor forms
given by the various constants specified by the following grammar.

<int> ::= "-"? <digit>+
<float> ::= "-"? <digit>+ <fractExponent>
<digit> = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
<fractExponent> ::= <fraction> <exponent>? | <exponent>
<fraction> ::= "." <digit>+
<exponent> ::= ("e" | "E") ("-" | "+") <digit>+

<bytestring> ::= "#" <byte>*
<byte> ::= <nybble> <nybble>
<nybble> ::= <digit>
 | "a" | "b" | "c" | "d" | "e" | "f"
 | "A" | "B" | "C" | "D" | "E" | "F"

There are no true eliminator forms for these types, but there are a number of
built in operations which can be applied to these types. We write the signatures
of built ins as follows: f : (A,B) ⇀ C indicates that built in name f can be
applied to an A and a B to produce a C. The built ins for these primitive
types are as follows, with implementations in terms of Haskell functions:

addInt : (Int,Int) ⇀ Int
 implemented as `(+) :: Int -> Int -> Int`

subtractInt : (Int,Int) ⇀ Int
 implemented as `(-) :: Int -> Int -> Int`

multiplyInt : (Int,Int) ⇀ Int
 implemented as `(*) :: Int -> Int -> Int`

divideInt : (Int,Int) ⇀ Int
 implemented as `div :: Int -> Int -> Int`

remainderInt : (Int,Int) ⇀ Int
 implemented as `(%) :: Int -> Int -> Int`

lessThanInt : (Int,Int) ⇀ Bool
 implemented as `(<) :: Int -> Int -> Bool`

equalsInt : (Int,Int) ⇀ Bool
 implemented as `(==) :: Int -> Int -> Bool`

intToFloat : (Int) ⇀ Float
 implemented as `fromInteger . toInteger :: Int -> Float`

intToByteString : (Int) ⇀ ByteString
 implemented as `encode :: Int -> ByteString`

addFloat : (Float,Float) ⇀ Float
 implemented as `(+) :: Float -> Float -> Float`

subtractFloat : (Float,Float) ⇀ Float
 implemented as `(-) :: Float -> Float -> Float`

multiplyFloat : (Float,Float) ⇀ Float
 implemented as `(*) :: Float -> Float -> Float`

divideFloat : (Float,Float) ⇀ Float
 implemented as `(/) :: Float -> Float -> Float`

lessThanFloat : (Float,Float) ⇀ Bool
 implemented as `(<) :: Float -> Float -> Bool`

equalsFloat : (Float,Float) ⇀ Bool
 implemented as `(==) :: Float -> Float -> Bool`

ceiling : (Float) ⇀ Float
 implemented as `ceiling:: Float -> Float`

floor : (Float) ⇀ Float
 implemented as `floor :: Float -> Float`

round : (Float) ⇀ Float
 implemented as `round :: Float -> Float`

concatenate : (ByteString,ByteString) ⇀ ByteString
 implemented via `concat :: [ByteString] -> ByteString`

drop : (Int,ByteString) ⇀ ByteString
 implemented via `drop :: Integer -> ByteString -> ByteString`

take : (Int,ByteString) ⇀ ByteString
 implemented via `take :: Integer -> ByteString -> ByteString`

sha2_256 : (ByteString) ⇀ ByteString
 implemented via `hash : [Char8] -> Digest SHA256`

sha3_256 : (ByteString) ⇀ ByteString
 implemented via `hash : [Char8] -> Digest SHA3_256`

equalsByteString : (ByteString,ByteString) ⇀ Bool
 implemented as `(==) :: ByteString -> ByteString -> Bool`

The use of these built in functions is by prefixing the name with ! and fully
applying them to arguments. E.g., adding 2 and 3 would be !addInt 2 3.

Function Types

Given any types A and B, there is a function type A -> B. To get a term
of this type, we can use the lambda introduction form as follows: if M has
type B and has a free variable x that has type A, then \x -> M has type
A -> B. We can use a term with a function type as follows: if M has type
A -> B and N has type A, then M N has type B. The computation for
functions is standard beta reduction: (\x -> M) N reduces to [N/x]M, i.e.
to M with N substituted for x. Computation in Plutus is performed eagerly,
and so N is evaluated before substitution is performed.

User Declared Types

When a user declares a new data type, for example

data Foo a = { Bar | Baz a }

this defines a new type constructor, in this case Foo, which has the following
inference rule associated with it: given any type A, Foo A is also a type.

It also comes with inference rules for the constructors, as follows: Bar has
type Foo A, for any choice of A; and if M has type A, then Baz M has
type Foo A.

The eliminator form for user declared types is the case construct, which is used
for all such types. Case analysis is like in Haskell, so for example we could
write

case foo of { Bar -> 0 | Baz x -> x }

to analyze an element of type Foo Int, computing an Int. There is a minor
difference from Haskell, however, in that we can analyze multiple terms at the
same time, by separating them (and their corresponding patterns) with |:

case foo0 | foo1 of { Bar | Bar -> 0 ; Baz x | Baz y -> !addInt x y }

Case analysis is not required to be total, that is to say, there may be missing
patterns. Any failed match causes the entire program to fail to run, and will
cause a transaction to be considered invalid.

Int, Float, and ByteString literals can be patterns as well, so we can,
for example, define the factorial function using case like so:

facInt : Int -> Int {
 facInt n = case n of {
 0 -> 1 ;
 _ -> !multiplyInt n (!subtractInt n 1)
 }
}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

for-contributors/deployment.html

 Navigation

 		
 index

 		cardano-docs latest documentation »

 © Copyright 2016.
 Created using Sphinx 1.3.5.

